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Abstract—Cyclic linear codes of block length over a finite field
are linear subspaces of that are invariant under a cyclic shift

of their coordinates. A family of codes is good if all the codes in the
family have constant rate and constant normalized distance (dis-
tance divided by block length). It is a long-standing open problem
whether there exists a good family of cyclic linear codes.

A code is -testable if there exists a randomized algorithm
which, given a word , adaptively selects positions, checks
the entries of in the selected positions, and makes a decision (ac-
cept or reject ) based on the positions selected and the numbers
found, such that

i) if then is surely accepted;
ii) if dist( ) then is probably rejected. (“dist”

refers to Hamming distance.)
A family of codes is locally testable if all members of the family

are -testable for some constant . This concept arose from holo-
graphic proofs/PCP’s. Recently it was asked whether there exist
good, locally testable families of codes.

In this paper the intersection of the two questions stated is ad-
dressed.

Theorem. There are no good, locally testable families of cyclic
codes over any (fixed) finite field.

In fact the result is stronger in that it replaces condition ii) of
local testability by the condition

ii’) if dist( ) then has a positive chance of being
rejected.

The proof involves methods from Galois theory, cyclotomy, and
diophantine approximation.

Index Terms—Coding theory, cyclic codes, locally testable codes.

I. INTRODUCTION

ALL codes discussed in this paper are linear. We study
rate/distance tradeoffs for locally testable cyclic codes. A

family of codes is good if the codes in the family have constant
rate and constant normalized distance.

An example of a class of locally testable cyclic codes is the
Hadamard codes [11]. However, these codes have logarithmic
information rate and are therefore far from being good.

It is a classical open question whether there exist good fami-
lies of cyclic codes (see [21, p. 270, Research Problem (9.2)]).
Extending results by Berman [10], we prove the nonexistence of
good families of cyclic codes for a large class of block lengths,
including block lengths with a large “smooth” divisor (a smooth
number has no large prime divisors) (Theorems 1.9 and 5.1).

Recently, Goldreich and Sudan asked whether there exist
good locally testable codes [17]. Our main result is that locally
testable cyclic codes cannot be good. In view of the general
tradeoffs we establish for cyclic codes, the critical remaining
case is when the block length has a large prime divisor. In this
case, we use diophantine approximation to establish a tradeoff
involving the testability parameter. Our results require only
a considerably weaker property than local testability: words
that are far from the code are only required to have a positive
chance of rejection (the chance may not be bounded away from
zero). We formalize this concept and state the main results in
Section I-B.

A. Preliminaries

Throughout this paper we shall use the following notation.
Let be a prime and . Let , the order of the field

. A linear code of length (“block length”) over is a
subspace . The dimension is referred to as the
number of information bits. The ratio
is the rate of . We say that a family of codes has
constant rate if , i.e., if . The
weight of a “word” is the number of nonzero
entries of . The distance of the code is

the minimum weight of nonzero codewords. The normalized
distance of is the quotient .

We say that is a family of good codes if both the rates
and the normalized distances of the are bounded away from
zero (i.e., these quantities are ).

A code is cyclic if it is invariant under the cyclic shift of the
coordinates, i.e.,

Cyclic codes have a voluminous literature; several of the
well-known families of classical codes are cyclic (Bose–Chaud-
huri–Hocquenghem (BCH) codes, Reed–Muller codes).

B. Weakly Locally Testable Codes: The Main Results

For , we use to denote (inner
product over ). For , the dual subspace is



Definition 1.1: An -tester for a linear code on input ran-
domly selects positions and checks
the corresponding entries in . ( depends only on the pairs

, , and on the random bits.) Then
it chooses a Boolean function at random
from a probability distribution that may depend on the sequence

, and accepts if .

i) An -tester is complete if it surely accepts each .
ii) An -tester is weakly sound if for all , if is

surely accepted then .

A linear code is weakly -testable if has a complete and
weakly sound -tester.

Remark 1.2: As Ben Sasson et al. [8] point out, in the case of
linear codes we may assume that the test functions are linear,
i.e., iff for a given vector

. We shall not use this observation.

Definition 1.3: A family of codes is weakly locally testable
if for some constant , all codes in the family are weakly
-testable.

Remark 1.4: This is clearly a weaker condition than local
testability: we do not require that words distant from be re-
jected with constant probability, only with positive probability.

Goldreich and Sudan ask whether there exist good, locally
testable codes [17]. We give a partial answer to this question;
our result may support the view that some of the complications
[17] go through (repeated concatenation steps, the use of prob-
abilistic checkable proofs (PCPs) to build their (nearly linear)
locally testable codes may be inevitable.

Theorem 1.5: Let be a finite field. There are no good,
weakly locally testable cyclic codes over .

This result is an immediate consequence of the following
tradeoff. Recall that for a good code, both and
must be .

Theorem 1.6: Let be a prime power. There is a constant
such that for any weakly -testable cyclic code , of

length , over either

• or
• .

Under a widely accepted number-theoretic hypothesis (about
“Wieferich primes”) we obtain a better tradeoff for binary codes.

Conjecture 1.7: For all primes

This conjecture has been verified for all primes .

Theorem 1.8: Let be a weakly -testable binary cyclic
code. If Conjecture 1.7 holds then either

• ; or
•

where is an absolute constant.

C. Cyclic Codes

Cyclic codes were first defined by Prange [22] in 1957.
Since then many families of cyclic codes have been found and
bounds on the rate and distance of cyclic codes were proved. In
particular several of the well-known classical codes are cyclic
(BCH codes, Reed-Muller codes). The monograph [21] is a
good source on cyclic codes; the question of existence of good
families of cyclic codes was also formalized there ([21, p. 270)].
The problem is still open; very little seems to have happened
in this area since an important 1967 paper by S. D. Berman
[10]. Berman deals with the semisimple case (when and
are relatively prime) and assumes that all primes dividing are
bounded. We extend Berman’s result in several directions: we
drop the semisimplicity assumption; permit the primes to grow
slowly while obtaining explicit tradeoffs; and allow to have a
large nonsmooth divisor (up to ). However, in
spite of these extensions, the basic ingredients from cyclotomy
in our proof are not significantly different from Berman’s.

The following is our main tradeoff for cyclic codes (without
testability assumption).

Theorem 1.9: Let . Let be a prime power. Let
where . Let be a cyclic code of

length over . Then

Note that is permitted in this result.

For bounded primes, our proof yields the following result.

Theorem 1.10: Let be fixed primes (not neces-
sarily different from ). For every , , there exist

such that if is a cyclic code, over , of length
with then .

Berman’s result is the case , . Theorems 1.9
and 1.10 will follow from Theorem 5.1 (Section V).

Another by-product of our proof is the following explicit
tradeoff related to the powers of dividing .

Theorem 1.11: Let be a prime power. Let .
Let be a cyclic code of length over . Then

We give the one-paragraph proof in Section III. The following
corollary to this result (with a rather more complicated proof)
appeared in 1991 in Castagnioli et al. [12].

Corollary 1.12 [12, Theorem 3]: Let be a family of
codes over . Let have block length . If
the are unbounded then the family is not good.

Proof: By Theorem 1.11

as would be the case for a good family.

Remark 1.13: In view of these results, the search for good
cyclic codes should focus on prime block length. Mersenne
primes would seem like prime candidates over because
for them has the largest number of factors.



D. Locally Testable Codes

A code is -testable if there exists a randomized algorithm
which, given a word , adaptively selects positions,
checks the entries of in the selected positions, and makes a
decision (accept or reject ) based on the numbers found on the
positions selected, such that

i) if then is surely accepted;
ii) if then is rejected with a constant prob-

ability (“dist” refers to Hamming distance).
A family of codes is locally testable if there exists a constant
such that all members of the family are -testable.

-testable codes for very small values of first arose from the
analysis of the codes used as the “exterior hulls” of holographic
proofs. Thus, as pointed out in [17], suitable (nontrivial) mod-
ification of [5] yields codes that are polylog-testable and have
quasi-polynomial length as a function of the number of infor-
mation bits. The length of the code was reduced to nearly linear

in [6] while retaining its polylog-testability. ([6]
has a correctable error; the proof as stated there yields nearly
quadratic length.) The seminal PCP paper by Arora et al. [2]
can be adapted to yield constant-testable codes of polynomial
length.

The testing length was reduced to 3 bits by Blum, Luby,
and Rubinfeld [11] at the cost of exponential length (Hadamard
code).

Friedl and Sudan [15] were the first to formally define locally
testable codes. In [15], they also gave a family of locally testable
codes of nearly quadratic length over a large alphabet.

The code of [15] is constructed as follows. The messages are
polynomials of degree in variables over the field ; both

and bounded by . A codeword is the set of restrictions
of the message to each affine line in , that is, for every affine
line in , we have a coordinate in the codeword, in which we
write the degree polynomial which is the restriction of the
message to that line. So this code uses an alphabet of size
(one “letter” for each univariate polynomial of degree over

).
Starting from the codes in [15], Goldreich and Sudan [17]

give two constructions of locally testable binary codes. In the
first construction they first restrict the code of [15] a random
subset of coordinates (which corresponds to taking a random
subset of affine lines); then they concatenate the code with a
Reed–Muller-type code, and finally, concatenate it with the
Hadamard code. In this construction, the length is
(any can be achieved). In the second construction, Gol-
dreich and Sudan again restrict the code of [15] a random subset
of coordinates, but now instead of concatenating the code, they
reduce the alphabet size by using PCPs. This construction gives
a locally testable code of nearly linear length .
Both constructions are randomized. These constructions were
derandomized by Ben Sasson et al. [9].

Goldreich and Sudan [17] also note, that, while the codes
constituting the outer layer of known holographic proofs/prob-
abilistically checkable proofs are not in themselves locally
testable, they can be modified (nontrivially) to yield locally
testable codes. Finally, Goldreich and Sudan raise the problem
we partially address here: do good locally testable codes exist?

In a recent paper, Ben Sasson et al. [8] study locally testable
codes with two queries. They show that any linear locally
testable code with two queries, over a finite alphabet, that
has a linear distance, contains at most a constant number of
codewords. This result also holds for nonlinear binary codes.
However, if the alphabet size is larger than then there exist
nonlinear locally testable codes with two queries of nearly
linear length.

Local decodability, a strengthening of the concept of local
testability, has been studied in [16], [18], [14], [19]. Stronger
tradeoffs than ours are obtained by these authors under this
stronger assumption; as shown in [17], such strong tradeoffs do
not hold for locally testable codes.

In addition to PCPs, local testability and local decod-
ability arise in several contexts in computational complexity
and cryptography, including self-testing/correcting computa-
tions, pseudorandom generators, private information retrieval,
fault-tolerant data storage. For further literature on these con-
nections we refer to the bibliographies of [18], [14].

E. Organization of the Paper

In Section II, we give the basic tools for dealing with cyclic
codes. In Section III, we prove the easy case where is di-
visible by a high power of the characteristic of the field. This
proof gives some intuition for the later proofs. In Section IV, we
give some information about cyclotomic polynomials over finite
fields that we will use in Section V for proving our main result
on cyclic codes (without local testability assumptions). In Sec-
tion VI, we show how to improve our tradeoff for binary codes
under a number-theoretic conjecture. The main contributions of
the paper follow in Sections VII and VIII where we use the local
testability assumption through a diophantine approximation ar-
gument to conclude the proof of our main tradeoff result.

II. CYCLIC CODES AND POLYNOMIALS

In this section, we review the polynomial ring machinery used
to handle cyclic codes. For more details we refer to [21].

Let be a prime power. Let . It is
known that is a principal ideal domain. In other words, every
ideal in is generated by some element . With the
vector we associate the polynomials

and

Let be a cyclic code. Let
and . The cyclicity of implies that
and are ideals in . As is a principal ideal domain, we
have that where ; we call the generator
polynomial of . So . Let ;
then and . We call the
parity-check polynomial for .

Clearly, . So has constant rate if and
only if .



For , let be the number of nonzero terms in
. The standard representative of in

is .
We shall use the following properties of the weight function.

Observation 2.1: For any

• ;
• ;
• ;
• .

The distance of can be expressed as follows:

The testing weight of , , is the smallest such that
there exist polynomials such that and

generate the same ideal as in . We use to
denote .

III. HIGH POWERS OF

In this section, we prove Theorem 1.11, the tradeoff for the
case when is divisible by a high power of . No local testa-
bility assumption will be made in this section. The idea is to
use the factorization of , the parity-check polynomial of , to
construct a codeword of small weight. The fact that
makes this analysis very easy. A similar argument will appear
in later sections, but with more complications.

Proof of Theorem 1.11: Let be the parity-check
polynomial of . Recall that . As is the characteristic
of the field, we have

Let be the smallest integer such that . Note
that . Let be a factor of

such that divides . Let . Note that

is a codeword as . Moreover, we can write
, for some polynomial , so

Combining our two inequalities we obtain
.

In order to prove a more general result we need to consider
the factorization of to cyclotomic polynomials, and their
irreducible factors.

IV. CYCLOTOMIC POLYNOMIALS

In this section, we collect basic facts about cyclotomic poly-
nomials over finite fields. We refer to [20] for proofs and further
information. We continue to work over the field , .

Let be the th cyclotomic polynomial over the rationals.
These polynomials can be calculated inductively from the iden-

tity . The degree of is ,1 and
is a polynomial with integer coefficients; let be the same
polynomial . Then is the th cyclotomic polyno-
mial over , and (equality ). For

, the roots of are the primitive th roots of unity in
the algebraic closure of . For , where ,

.

Lemma 4.1: Let , be integers such that every prime
dividing divides . Then

Proof: The proof is a repeated application of Exercise
2.57(b) from [20], where this fact is stated for the case when

is a prime.

For coprime to let denote the order of in ,
the multiplicative group of the ring (the integers modulo

). Note that for we have

( is the least common multiple of and ).

Lemma 4.2: ([20, p. 65]) For coprime to , all the irre-
ducible factors of over have degree .

Let be a prime different than . When is odd we define
to be the smallest exponent such that .
When we define to be the exponent satisfying

. Note that in both cases .
We will use to determine the order of modulo for

large values of .

Lemma 4.3: Let , be different primes. For we
have

odd
or .

For

odd
.

Proof: We begin with the first claim. Assume that .
Let and let . Clearly, . Let be
such that , where is not divisible by

. We will show that , which implies that for every

Thus, . As the
claim follows. Indeed, let . We have
that

As is not divisible by we get that .

1'(n) = #fm � nj gcd(m;n) = 1g.



Assume now that . By definition of we have that
. Thus, , and the claim

follows.
We now prove the claim for the case . Let ,

and denote . We prove the claim for by induction on
. From the proof of the first claim and the definition of we

get that

where is not divisible by . This proves the claim for the case
. For the inductive step we need the following claim.

Claim 4.4: Let where is not
divisible by . Assume that for odd and for

. Then .
Proof: We have for some integer .

Hence,

When , we have that and, hence, only the
first two terms in the sum can be nonzero modulo . When

and we have and, hence, only the first
three terms in the sum can be nonzero modulo ; moreover,
the third term is divisible by and, hence, is zero modulo

. Thus, only the first two summands are nonzero
so we get that the sum is equivalent to

Thus, by induction on we obtain that

for every . Hence, the order of in divides
, is divisible by the (because of

the induction hypothesis), and is not . Hence, the
claim follows.

We are now ready to prove the main lemma of this sec-
tion. Let . The following lemma shows
that the irreducible factors of over the field are ex-
actly the irreducible factors of evaluated at ,
for , where is determined by , , and

.

Lemma 4.5: Let be different primes where
. Let be the largest integer such that divides . Let be

the largest integer such that there exists for which di-
vides . Let . Let . Let

where . Let
be the irreducible factors of over . Then the irreducible
factors of over are .

Proof: The idea of the proof is simple. First, we use
Lemma 4.1 to obtain

This implies that is a factor of . Now we
show that and using Lemma 4.2
we get that it is an irreducible factor.

Note that divides and does not di-
vide for any and any (follows from Lemma

4.3). Moreover, does not divide . Using Lemma 4.3 we
obtain that

Where equality holds because the ’s were defined in
such a way that if then the power of that divides each

is smaller or equal to the power of that divides

. By Lemma 4.2, we get that for every ,

. From this we see that for every , is a
factor of minimal degree of , and hence it is irreducible.
This completes the proof of Lemma 4.5.

Lemma 4.6: Let be as defined in Lemma 4.5. Then

Proof: From the definition of the it follows that each
divides . As the are distinct, we obtain
that

V. SMALL PRIMES

In this section, we settle the case when a large part of factors
into powers of very small primes. No local testability assump-
tion will be made in this section.

Notation: Let be a positive integer. The sum of divisors of
smaller than will be denoted . Let

. Let be the maximal such that .
We now prove a generalization of both Theorems 1.9 and

1.10. The theorems will follow from estimates on and
the general theorem. In Section VI, we improve Theorem 5.1
for binary codes under a plausible number theoretic conjecture.

Theorem 5.1: Let be a prime power. Let
where are different primes. Let

be a cyclic code of length over . Let . Then

where .
Proof: We first sketch the idea of the proof. Let be the

parity-check polynomial of . We shall show that shares a



factor with a cyclotomic polynomial where has
a large smooth divisor. It follows by Lemma 4.5 that can
be written as a polynomial of a large power of . This in turn
implies, as in the proof of Theorem 1.11, that the polynomial

represents a codeword of small weight.
We now begin the formal proof. Let be the parity-check

polynomial of the code . Recall that .
Let be the rate of the code. For not divisible
by let . For , where is
not divisible by , we define recursively on

Thus, is the part that “contributes” to . This is made
precise in the next claim.

Claim 5.2:

a) .
b) If and then .

Proof: Let be a divisor of which is not divisible by .
We have that

As for any two integers , which are not divisible by , we
have that

We get that

The second claim follows from the observation that if
is the maximal power of such that , then

is not divisible by , as otherwise would be a common
factor of and of and, hence, a factor of .

This implies that is not a factor of in contradiction.

From the fact we infer . We
have . Therefore,

and hence there is such that and
.

This completes the first step of the proof as outlined. Let
be the part of not divisible by , i.e., . Let be
an irreducible factor of .

Claim 5.3: .
Proof: As and is an ir-

reducible factor of , we get that is an irreducible factor
of . Therefore, for every we have that

. As we get, by Observation 5.2, that for every
, . Since we get

that

where the in the exponent comes from the contributions of
and . Thus, for we have that .

As , we get that is a codeword. We
will show that has a small weight. Since is a power of we
have that . From Observation 2.1 it follows
that . We now show that can be
written as a polynomial in for some large that divides .

Recall that is the part of which is not divisible by ,
and that is a factor of . Denote

Let be defined as in Lemma 4.5.
We obtain that the irreducible factors of are

where are the
irreducible factors of . Hence, has all exponents divisible
by . Since we can view both and as
polynomials in and conclude that

From Lemma 4.6 we get that

Hence,

This completes the proof of the Theorem 5.1.

We now show how to prove Theorems 1.9, 1.10.

A. Proof of Theorem 1.9

We use the following estimate on .

Lemma 5.4: For any

Proof: It is known that the number of divisors of a number
is less than (see, e.g., [7, p. 234]), so the claim

follows.



Using this estimate we obtain the following result.

Corollary 5.5: Let be a prime power. Let
where are different primes. Let

be a cyclic code of length over . Then

(1)

where .

Recall that the quantity is defined before Lemma
4.3, where it is noted that . Therefore,

. The way to prove the theorem will be
to divide the primes to the set of primes smaller than
(for some parameter ), and the primes larger than , and to
estimate the contribution of each to the (1). We shall need the
following explicit estimates.

Theorem 5.6 (see [7, p. 233]): For all , we have
, where the sum ranges over all

primes .

Theorem 5.7 (see [7, p. 233]): Let . The th prime
satisfies

Corollary 5.8: For all we have

where the sum ranges over all primes .
Proof: For , the corollary is verified by a com-

puter. Now let . We have . Let
be the largest integer such that . Note that

. Using the monotonicity
of for we obtain

Hence,

Proof of Theorem 1.9: Let be defined as in The-
orem 5.1. For , we use . From
Corollary 5.8 we obtain

For , we use and hence,

Theorem 1.9 now follows from Corollary 5.5.

As a special case of Theorem 1.9, we obtain following result.

Corollary 5.9: Let be a fixed prime power. Let be
the largest prime dividing . For any , there exists

such that if then for cyclic
codes over of length

B. Proof of Theorem 1.10

We shall need the following estimate on .

Lemma 5.10: Let ( prime). Let

and . Then .

We defer the proof of this bound to the end of this section. By
plugging the estimate on to Theorem 5.1, we obtain the
following corollary.

Corollary 5.11: Let be a prime power. Let
be a fixed set of primes different from . Let be a
constant. Let be as in Lemma 5.10. Let be a cyclic code of
length and dimension . Then

The explicit estimate for Berman’s result (Theorem 1.10) fol-
lows from the corollary and the fact that and all the ’s are
fixed (and so is also fixed).

We devote the rest of this section to proving Lemma 5.10.

Lemma 5.12: Let ( prime). Then for any

Proof: Let

and

Clearly, if and then there exist in such
that . We thus obtain that



Consider some . Denote . We get
that

Therefore,

Claim 5.13: .
Proof: Let . Then and . Denote

. Clearly

Therefore, the number of such is at most

This completes the proof of Lemma 5.12.

Proof of Lemma 5.10: We will show that for our choice
of

(2)

Note that and, hence, it is enough to show
Let . The inequality

we want to prove becomes , which is true for
.

Using (2) and Lemma 5.12 we obtain

and hence .

VI. WIEFERICH PRIMES

In this section, we improve our tradeoff under a widely ac-
cepted number-theoretic hypothesis. This section is only rele-
vant to binary codes, i.e., codes over .

Primes such that , i.e., primes satisfying
, are called Wieferich primes and have played an

important role in certain cases of Fermat’s Last Theorem [23].
There are only two Wieferich primes known ( and ).
There are no other Wieferich primes less than [13]. It is
not known whether there are infinitely many Wieferich primes.
For and we have and for all other
primes we have .

Conjecture 6.1: For every prime , .

(This is a restatement of Conjecture 1.7.)
Using the fact that the product of primes less than is

, we obtain the following conditional consequence of The-
orem 5.1.

Corollary 6.2: Let be the largest prime dividing . If
Conjecture 6.1 holds then, for any , there exists
such that if then for binary cyclic codes of length

, .

VII. -CLOSED CODES

So far, our proofs worked for all cyclic codes. The remaining
cases will require the assumption of local testability.

In this section, we show how to replace the algorithmic con-
cept of -testability with the algebraic concept of -closure on
which the proof in the next section will be based.

Definition 7.1: The -core of a code is the subspace of
spanned by the words of weight . The -closure of is the
dual of the -core of the dual. We say that is -closed if is
its own -closure.

Observation 7.2: is -closed exactly if is spanned by
its words of weight . Moreover, the -closure of is the
smallest -closed subspace containing .

Let . For and , let denote
the restriction of to (a string of numbers from ). We
shall need the following characterization of the -closure.

Proposition 7.3: Let . Then belongs to the -clo-
sure of if and only if for all , if then there
exists such that .

Proof: The “if” part is trivial, so we prove the “only if”
part (which is the part we shall need below). Let denote the
-closure of and let . Let , . We need

to prove that . Let
(the projection of obtained by restriction to ). We need to
prove that . This will be accomplished by proving that

. Let . We need to show that .
Let be the word with zero entries outside

and restricting to . Now because for all ,
. But , so and, therefore,

. Consequently, , as desired.

Proposition 7.4: Let be a complete -tester for (surely
accepts all words in ) and let be the -closure of . Then

surely accepts all words in .
Proof: Let . On input , let select ,

(in some order). Now ; therefore,
on input , makes the exact same sequence of choices. But
must accept ; therefore, it will accept .

The main result of this section follows. This result holds not
only for cyclic codes but also for codes that are invariant under
a transitive group action.

Definition 7.5: Let be a group acting on as permuta-
tions. We say that is transitive if for every there
exists such that . Let be a code. We



say that is invariant under the group if for every we
have .

Lemma 7.6: ([4]) Let and let be a transitive
permutation group acting on . Then

where denotes the expected value over uniform .
Proof: For , let be the event that . Let

and let be such that . Note that
is uniformly random over . We have iff
and, hence, . Let be the indicator random
variable of . The function is constantly equal
to and, hence, . Using

we obtain for any . Finally, we obtain

Corollary 7.7: Under the conditions of Lemma 7.6, the ex-
pected size of the symmetric difference is

Lemma 7.8: Let be a weakly -testable code. Assume is
invariant under the action of a transitive permutation group .
Then is -closed.

Proof: Let denote the -closure of . Note that is
invariant under the action of . Assume for a contradiction that

. Let and let be a word in . As is
accepted by , we must have that . Therefore,
there is a nonzero word in such that . Let
be a word of weight ; let be maximum under this
constraint.

Claim 7.9: .
Proof: Assume for a contradiction that . Let

be a random translate of under the given transitive group
action. (So .)

Let be the set of coordinates on which is nonzero and let
be the set of coordinates on which is nonzero. Note that

and . By Corollary 7.7, the expected
size of is and, hence,
the expected weight of is at least

therefore, there exists (a translate of ) such that
. Therefore, by the maximality of , we

have . But

which is a contradiction, proving Claim 7.9.

Now , and therefore, .
This is a contradiction because is accepted by according to
Proposition 7.4. This completes the proof of Lemma 7.8.

VIII. NOT ALL PRIMES SMALL

In this section, we settle the case when is divisible by an
unbounded prime ( , where is the largest prime
dividing ). This is the only case where local testability plays a
role; by Lemma 7.8, we shall assume that our codes are -closed.

Theorem 8.1: Let be a prime such that . For every
-closed2 cyclic code of length we have either

or .

We postpone the proof of Theorem 8.1 to the end of this sec-
tion and first show hot to prove Theorem 1.6.

Proof of Theorem 1.6: Let , as defined in
Corollary 5.9. We will show that we can choose

in the role of the constant “ ” appearing in Theorem 1.6.
There are two cases. If the primes dividing are bounded by

then, by Corollary 5.9,
and, hence, either or .

Using we obtain

and hence we proved Theorem 1.6 in the first case. In the case
when the largest prime dividing is at least
we use Theorem 8.1.

Similarly, Theorem 1.8 follows by combining Theorem 8.1
with Corollary 6.2. Let , as defined in Corollary
5.9. Then we can choose in the
role of the constant “ ” appearing in Theorem I.8.

Corollary 8.2: Let be a family of locally testable cyclic
codes. Let be of length , and let be the largest prime
divisor of . If then this family cannot be good.

We now turn to the proof of Theorem 8.1. We shall need the
following classical result on simultaneous diophantine approx-
imation.

Theorem 8.3 (Dirichlet): Let be real numbers and
an integer. Then there exist integers such

that and .

Let denote the algebraic closure of . As before, we as-
sume that is a code over , where .

Lemma 8.4: Let be a prime, and
. Assume that . Then either divides or

.
Proof: Let be a root of . Let .

Clearly

Let be the exponents of nonzero terms in , i.e.,
. Without loss of generality, we can as-

sume that because zero is not a root of . Let

2We assume here that r > 1 because otherwise, sinceC is cyclic, we would
have C = , and so C = 0.



. Let be the
best (in max-norm) simultaneous diophantine approximation of

with . Let . By Dirichlet’s The-
orem VIII.3

Let . Let further . We have
. Define

We have

As , we get that

Let be the inverse of modulo , that is, .
If is a common root of and then is a root of

. Indeed, as we get that the following equalities hold:

If is the zero polynomial then divides , and
hence, divides . As is invertible this
implies that divides . To see this we note that

and . As

we get that . Thus, if we get that .
If , then it has at most roots, and so by

the discussion above, and have at most
common roots. Hence,

Proof of Theorem 8.1: Let be the test
polynomials of the code. We have . Let

be the parity-check polynomial of . Let where
is not divisible by . We have

where the product ranges over all th roots of unity . If
for each we have then

Otherwise, there exists an th root of unity such that
. This means that for every

By Lemma 8.4, divides each and hence also (as the
’s span ). Note that divides for any because

is a Frobenius automorphism of , and the
coefficients of are in and hence fixed by . Let

be the minimal polynomial of . Then ,
where is the smallest positive integer such that . Hence,

divides . As is an th root of unity we get that
, and so divides , and hence it divides

. Let . Clearly, . Moreover,
has at most terms because all the exponents are divisible

by . This concludes the proof of the Theorem 8.1.
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